Comptonův jev
Comptonův jev (někdy také Comptonův rozptyl) je fyzikální děj, při kterém se při interakci elektromagnetického záření s atomy pevné látky mění vlnová délka záření v důsledku předání části své energie atomům nebo jejich elektronům. Experimentální důkaz tohoto jevu sloužil jako jeden ze základních argumentů pro vlnově-korpuskulární charakter světla a elektromagnetického záření celkově.
Historie
[editovat | editovat zdroj]Jako první publikoval pozorování tohoto jevu Arthur Holly Compton v roce 1923 a roku 1927 za jeho teoretické zdůvodnění a další výzkum v tomto oboru získal i Nobelovu cenu za fyziku.
Compton při svých pokusech nechal dopadat rentgenové záření o energii 17,8 keV na uhlíkovou destičku a měřil energii odražených fotonů v závislosti na úhlu odrazu. Změřená spektra vykazovala přitom podobný tvar jako původní záření, ale byla energeticky posunuta k větším vlnovým délkám - měla tedy nižší energii než původní budící rentgenové záření.
Compton použil energetické záření a považoval elektrony v látce jako volné částice. Pokud je ale použito nízkoenergetické záření, jev vykazuje i charakter ionizace.[1]
Zdůvodnění jevu a matematický popis
[editovat | editovat zdroj]Záření s vysokou energií (řádově několik keV) při průchodu prostředím tvořeným lehkými atomy (tj. s nižšími protonovými čísly) podléhá typu absorpce, zvanému Comptonův jev (Comptonův rozptyl, kvantový rozptyl).
Při tomto typu absorpce narazí foton záření gama nebo rentgenového záření na elektron, který uvolní z jeho dráhy. Foton přitom ztratí pouze určitou část své energie, změní směr pohybu a pokračuje dál jako rozptýlené záření o větší vlnové délce. Čím víc energie získal elektron od fotonu, tím méně je odchýlen od původního směru pohybu fotonu. Foton v tomto případě změní svůj směr o větší úhel. Při předání menší části energie je tomu naopak: odchýlení dráhy elektronu (po srážce s fotonem) od původního směru fotonu je větší, odchýlení fotonu je menší.
Při Comptonově jevu se tedy počet fotonů nemění, fotony se pouze rozptylují z původního směru, ztrácejí část své energie a zvětšují svoji vlnovou délku.
Uvažujme takové uspořádání experimentu, kdy na elektron, který je v klidu dopadá foton (tedy elektromagnetické záření).
Energii dopadajícího fotonu lze vyjádřit jako
- ,
kde je Planckova konstanta a je frekvence, a jeho hybnost je rovna
- ,
kde je rychlost světla.
Podle zákona zachování energie se změna energie fotonu během srážky rovná změně (tedy přírůstku) kinetické energie elektronu, tzn.
- .
kde je frekvence dopadajícího fotonu, je frekvence fotonu po srážce a je kinetická energie elektronu po srážce (kinetická energie elektronu před srážkou je na základě předpokladu o uspořádání experimentu nulová).
K výpočtu energie elektronu musíme použít relativistický vztah, neboť po srážce se elektron bude pohybovat rychlostí blízkou rychlosti světla. Celkovou energii elektronu po srážce lze vyjádřit jako
- ,
kde označuje klidovou hmotnost částice a je hybnost elektronu po srážce. Klidová hmotnost fotonu je nulová, klidová hmotnost elektronu je .
Protože před srážkou byla rychlost elektronu nulová, je energie elektronu před srážkou rovna . Po srážce je celková energie elektronu rovna klidové energii zvětšené o energii získanou od fotonu, tzn. . Dva předcházející vztahy dávají dohromady relaci
Za kinetickou energii dosadíme , čímž dostaneme po úpravě výraz
Podle zákona zachování hybnosti musí platit
a poněvadž
- ,
kde je vektor hybnosti dopadajícího fotonu, je vektor hybnosti fotonu po srážce a je hybnost elektronu po srážce, přičemž se vychází z předpokladu, že na základě uspořádání experimentu lze hybnost elektronu před srážkou položit rovnu nule.
Označíme-li jako úhel mezi směrem dopadajícího a rozptýleného paprsku, tzn. úhel mezi vektory a , můžeme předchozí vztah upravit na tvar
Kombinací vztahů získaných ze zákona zachování energie a zákona zachování hybnosti pak plyne
Pomocí vlnové délky [] lze tento vztah přepsat
Veličina se nazývá Comptonův posuv a lze ji vyjádřit jako
Tento vztah je označován jako Comptonova rovnice. Veličina se nazývá Comptonova vlnová délka.
Podle Comptonovy rovnice dochází k největší změně vlnové délky pro úhel rozptylu , tzn.
Comptonův jev prokázal, že foton má nejen energii, ale také hybnost, tzn. prokázal částicovou povahu elektromagnetického záření.
Míra rozptylu závisí na polarizaci záření.[2]
Inverzní Comptonův jev
[editovat | editovat zdroj]Inverzní Comptonův rozptyl je obrácený jev. Lze jej popsat jako Thomsonův rozptyl v klidové soustavě.[3]
Reference
[editovat | editovat zdroj]- ↑ https://phys.org/news/2020-04-puzzle-compton-approach-theories-quantum.html - Researchers solve puzzle of Compton scattering: New approach for testing theories in quantum mechanics
- ↑ http://geant4.cern.ch/G4UsersDocuments/UsersGuides/PhysicsReferenceManual/html/node56.html Archivováno 8. 10. 2016 na Wayback Machine. - Compton Scattering by Linearly Polarized Gamma Rays
- ↑ http://boojum.as.arizona.edu/~jill/A300b/Lectures/Inverse%20Compton%20Radiation.ppt Archivováno 16. 9. 2016 na Wayback Machine. - Inverse Compton radiation
Související články
[editovat | editovat zdroj]Externí odkazy
[editovat | editovat zdroj]- Obrázky, zvuky či videa k tématu Comptonův jev na Wikimedia Commons